Files
blog/maths/baes/index.html
2025-06-03 08:39:37 +00:00

701 lines
41 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html lang="en" class="no-js">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,initial-scale=1">
<link rel="canonical" href="https://rustbas.github.io/blog/maths/baes/">
<link rel="icon" href="../../assets/images/favicon.png">
<meta name="generator" content="mkdocs-1.6.1, mkdocs-material-9.6.14">
<title>Немного про Байесовскую статистику - Очередные записки очередного гика</title>
<link rel="stylesheet" href="../../assets/stylesheets/main.342714a4.min.css">
<link rel="stylesheet" href="../../assets/stylesheets/palette.06af60db.min.css">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Roboto:300,300i,400,400i,700,700i%7CJetBrains+Mono:400,400i,700,700i&display=fallback">
<style>:root{--md-text-font:"Roboto";--md-code-font:"JetBrains Mono"}</style>
<script>__md_scope=new URL("../..",location),__md_hash=e=>[...e].reduce(((e,_)=>(e<<5)-e+_.charCodeAt(0)),0),__md_get=(e,_=localStorage,t=__md_scope)=>JSON.parse(_.getItem(t.pathname+"."+e)),__md_set=(e,_,t=localStorage,a=__md_scope)=>{try{t.setItem(a.pathname+"."+e,JSON.stringify(_))}catch(e){}}</script>
</head>
<body dir="ltr" data-md-color-scheme="default" data-md-color-primary="green" data-md-color-accent="indigo">
<input class="md-toggle" data-md-toggle="drawer" type="checkbox" id="__drawer" autocomplete="off">
<input class="md-toggle" data-md-toggle="search" type="checkbox" id="__search" autocomplete="off">
<label class="md-overlay" for="__drawer"></label>
<div data-md-component="skip">
<a href="#_1" class="md-skip">
Skip to content
</a>
</div>
<div data-md-component="announce">
</div>
<header class="md-header md-header--shadow" data-md-component="header">
<nav class="md-header__inner md-grid" aria-label="Header">
<a href="../.." title="Очередные записки очередного гика" class="md-header__button md-logo" aria-label="Очередные записки очередного гика" data-md-component="logo">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 8a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3 3 3 0 0 0 3 3m0 3.54C9.64 9.35 6.5 8 3 8v11c3.5 0 6.64 1.35 9 3.54 2.36-2.19 5.5-3.54 9-3.54V8c-3.5 0-6.64 1.35-9 3.54"/></svg>
</a>
<label class="md-header__button md-icon" for="__drawer">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 6h18v2H3zm0 5h18v2H3zm0 5h18v2H3z"/></svg>
</label>
<div class="md-header__title" data-md-component="header-title">
<div class="md-header__ellipsis">
<div class="md-header__topic">
<span class="md-ellipsis">
Очередные записки очередного гика
</span>
</div>
<div class="md-header__topic" data-md-component="header-topic">
<span class="md-ellipsis">
Немного про Байесовскую статистику
</span>
</div>
</div>
</div>
<form class="md-header__option" data-md-component="palette">
<input class="md-option" data-md-color-media="" data-md-color-scheme="default" data-md-color-primary="green" data-md-color-accent="indigo" aria-label="Switch to dark mode" type="radio" name="__palette" id="__palette_0">
<label class="md-header__button md-icon" title="Switch to dark mode" for="__palette_1" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M17 7H7a5 5 0 0 0-5 5 5 5 0 0 0 5 5h10a5 5 0 0 0 5-5 5 5 0 0 0-5-5m0 8a3 3 0 0 1-3-3 3 3 0 0 1 3-3 3 3 0 0 1 3 3 3 3 0 0 1-3 3"/></svg>
</label>
<input class="md-option" data-md-color-media="" data-md-color-scheme="slate" data-md-color-primary="teal" data-md-color-accent="indigo" aria-label="Switch to light mode" type="radio" name="__palette" id="__palette_1">
<label class="md-header__button md-icon" title="Switch to light mode" for="__palette_0" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M17 6H7c-3.31 0-6 2.69-6 6s2.69 6 6 6h10c3.31 0 6-2.69 6-6s-2.69-6-6-6m0 10H7c-2.21 0-4-1.79-4-4s1.79-4 4-4h10c2.21 0 4 1.79 4 4s-1.79 4-4 4M7 9c-1.66 0-3 1.34-3 3s1.34 3 3 3 3-1.34 3-3-1.34-3-3-3"/></svg>
</label>
</form>
<script>var palette=__md_get("__palette");if(palette&&palette.color){if("(prefers-color-scheme)"===palette.color.media){var media=matchMedia("(prefers-color-scheme: light)"),input=document.querySelector(media.matches?"[data-md-color-media='(prefers-color-scheme: light)']":"[data-md-color-media='(prefers-color-scheme: dark)']");palette.color.media=input.getAttribute("data-md-color-media"),palette.color.scheme=input.getAttribute("data-md-color-scheme"),palette.color.primary=input.getAttribute("data-md-color-primary"),palette.color.accent=input.getAttribute("data-md-color-accent")}for(var[key,value]of Object.entries(palette.color))document.body.setAttribute("data-md-color-"+key,value)}</script>
<label class="md-header__button md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.52 6.52 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5"/></svg>
</label>
<div class="md-search" data-md-component="search" role="dialog">
<label class="md-search__overlay" for="__search"></label>
<div class="md-search__inner" role="search">
<form class="md-search__form" name="search">
<input type="text" class="md-search__input" name="query" aria-label="Search" placeholder="Search" autocapitalize="off" autocorrect="off" autocomplete="off" spellcheck="false" data-md-component="search-query" required>
<label class="md-search__icon md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.52 6.52 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5"/></svg>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11z"/></svg>
</label>
<nav class="md-search__options" aria-label="Search">
<button type="reset" class="md-search__icon md-icon" title="Clear" aria-label="Clear" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12z"/></svg>
</button>
</nav>
</form>
<div class="md-search__output">
<div class="md-search__scrollwrap" tabindex="0" data-md-scrollfix>
<div class="md-search-result" data-md-component="search-result">
<div class="md-search-result__meta">
Initializing search
</div>
<ol class="md-search-result__list" role="presentation"></ol>
</div>
</div>
</div>
</div>
</div>
<div class="md-header__source">
<a href="https://github.com/rustbas/blog" title="Go to repository" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 6.7.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2024 Fonticons, Inc.--><path d="M216.29 158.39H137C97 147.9 6.51 150.63 6.51 233.18c0 30.09 15 51.23 35 61-25.1 23-37 33.85-37 49.21 0 11 4.47 21.14 17.89 26.81C8.13 383.61 0 393.35 0 411.65c0 32.11 28.05 50.82 101.63 50.82 70.75 0 111.79-26.42 111.79-73.18 0-58.66-45.16-56.5-151.63-63l13.43-21.55c27.27 7.58 118.7 10 118.7-67.89 0-18.7-7.73-31.71-15-41.07l37.41-2.84zm-63.42 241.9c0 32.06-104.89 32.1-104.89 2.43 0-8.14 5.27-15 10.57-21.54 77.71 5.3 94.32 3.37 94.32 19.11m-50.81-134.58c-52.8 0-50.46-71.16 1.2-71.16 49.54 0 50.82 71.16-1.2 71.16m133.3 100.51v-32.1c26.75-3.66 27.24-2 27.24-11V203.61c0-8.5-2.05-7.38-27.24-16.26l4.47-32.92H324v168.71c0 6.51.4 7.32 6.51 8.14l20.73 2.84v32.1zm52.45-244.31c-23.17 0-36.59-13.43-36.59-36.61s13.42-35.77 36.59-35.77c23.58 0 37 12.62 37 35.77s-13.42 36.61-37 36.61M512 350.46c-17.49 8.53-43.1 16.26-66.28 16.26-48.38 0-66.67-19.5-66.67-65.46V194.75c0-5.42 1.05-4.06-31.71-4.06V154.5c35.78-4.07 50-22 54.47-66.27h38.63c0 65.83-1.34 61.81 3.26 61.81H501v40.65h-60.56v97.15c0 6.92-4.92 51.41 60.57 26.84z"/></svg>
</div>
<div class="md-source__repository">
GitHub
</div>
</a>
</div>
</nav>
</header>
<div class="md-container" data-md-component="container">
<main class="md-main" data-md-component="main">
<div class="md-main__inner md-grid">
<div class="md-sidebar md-sidebar--primary" data-md-component="sidebar" data-md-type="navigation" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--primary" aria-label="Navigation" data-md-level="0">
<label class="md-nav__title" for="__drawer">
<a href="../.." title="Очередные записки очередного гика" class="md-nav__button md-logo" aria-label="Очередные записки очередного гика" data-md-component="logo">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 8a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3 3 3 0 0 0 3 3m0 3.54C9.64 9.35 6.5 8 3 8v11c3.5 0 6.64 1.35 9 3.54 2.36-2.19 5.5-3.54 9-3.54V8c-3.5 0-6.64 1.35-9 3.54"/></svg>
</a>
Очередные записки очередного гика
</label>
<div class="md-nav__source">
<a href="https://github.com/rustbas/blog" title="Go to repository" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 6.7.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2024 Fonticons, Inc.--><path d="M216.29 158.39H137C97 147.9 6.51 150.63 6.51 233.18c0 30.09 15 51.23 35 61-25.1 23-37 33.85-37 49.21 0 11 4.47 21.14 17.89 26.81C8.13 383.61 0 393.35 0 411.65c0 32.11 28.05 50.82 101.63 50.82 70.75 0 111.79-26.42 111.79-73.18 0-58.66-45.16-56.5-151.63-63l13.43-21.55c27.27 7.58 118.7 10 118.7-67.89 0-18.7-7.73-31.71-15-41.07l37.41-2.84zm-63.42 241.9c0 32.06-104.89 32.1-104.89 2.43 0-8.14 5.27-15 10.57-21.54 77.71 5.3 94.32 3.37 94.32 19.11m-50.81-134.58c-52.8 0-50.46-71.16 1.2-71.16 49.54 0 50.82 71.16-1.2 71.16m133.3 100.51v-32.1c26.75-3.66 27.24-2 27.24-11V203.61c0-8.5-2.05-7.38-27.24-16.26l4.47-32.92H324v168.71c0 6.51.4 7.32 6.51 8.14l20.73 2.84v32.1zm52.45-244.31c-23.17 0-36.59-13.43-36.59-36.61s13.42-35.77 36.59-35.77c23.58 0 37 12.62 37 35.77s-13.42 36.61-37 36.61M512 350.46c-17.49 8.53-43.1 16.26-66.28 16.26-48.38 0-66.67-19.5-66.67-65.46V194.75c0-5.42 1.05-4.06-31.71-4.06V154.5c35.78-4.07 50-22 54.47-66.27h38.63c0 65.83-1.34 61.81 3.26 61.81H501v40.65h-60.56v97.15c0 6.92-4.92 51.41 60.57 26.84z"/></svg>
</div>
<div class="md-source__repository">
GitHub
</div>
</a>
</div>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../" class="md-nav__link">
<span class="md-ellipsis">
Математика
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../linux/" class="md-nav__link">
<span class="md-ellipsis">
Linux
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../common/" class="md-nav__link">
<span class="md-ellipsis">
Общее
</span>
</a>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-sidebar md-sidebar--secondary" data-md-component="sidebar" data-md-type="toc" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--secondary" aria-label="Table of contents">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
Table of contents
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#_2" class="md-nav__link">
<span class="md-ellipsis">
Задача
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#_3" class="md-nav__link">
<span class="md-ellipsis">
Решение
</span>
</a>
<nav class="md-nav" aria-label="Решение">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#_4" class="md-nav__link">
<span class="md-ellipsis">
Библиотеки
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#_5" class="md-nav__link">
<span class="md-ellipsis">
Константы и функции
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#_6" class="md-nav__link">
<span class="md-ellipsis">
Моделирование
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#_7" class="md-nav__link">
<span class="md-ellipsis">
График
</span>
</a>
<nav class="md-nav" aria-label="График">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#_8" class="md-nav__link">
<span class="md-ellipsis">
Мода
</span>
</a>
</li>
</ul>
</nav>
</li>
</ul>
</nav>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-content" data-md-component="content">
<article class="md-content__inner md-typeset">
<h1 id="_1">Немного про Байесовскую статистику</h1>
<h2 id="_2">Задача</h2>
<p>Представим, что у нас есть монета, честность которой нам неизвестна (если быть
точным, мы не знаем с каким шансом выпадает орёл, с каким — решка). Поэтому мы
бы хотели оценить вероятность <span class="arithmatex">\(p\)</span> — шанс выпадения орла<sup id="fnref:1"><a class="footnote-ref" href="#fn:1">1</a></sup>.</p>
<p>В <a href="https://ru.wikipedia.org/wiki/%D0%A1%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D0%BA%D0%B0">классической статистике</a>
эта задача бы решалась бы так:</p>
<ul>
<li>Монета подбрасывается <span class="arithmatex">\(n\)</span> раз.</li>
<li>Из них <span class="arithmatex">\(m\)</span> — количество выпавших орлов.</li>
<li>Отношение <span class="arithmatex">\(\frac{m}{n}\)</span> будет оценкой <span class="arithmatex">\(p\)</span>.</li>
</ul>
<p>В <a href="https://ru.wikipedia.org/wiki/%D0%91%D0%B0%D0%B9%D0%B5%D1%81%D0%BE%D0%B2%D1%81%D0%BA%D0%B0%D1%8F_%D1%81%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D0%BA%D0%B0">Байесовской
статистике</a>
подход иной:</p>
<ol>
<li>Обозначим монету как <a href="https://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5_%D0%91%D0%B5%D1%80%D0%BD%D1%83%D0%BB%D0%BB%D0%B8">бернуллевскую случайную
величину</a>
<span class="arithmatex">\(\xi\)</span> с параметром <span class="arithmatex">\(\theta\)</span>, у которой <span class="arithmatex">\(1\)</span> — это выпадение орла, <span class="arithmatex">\(0\)</span>
решки. </li>
<li>Предполагается априорное распределение <span class="arithmatex">\(\pi(\theta)\)</span> (т.е. распределение,
которое мы предполагаем, исходя из того, что нам известно о параметре
<span class="arithmatex">\(\theta\)</span>), как правило, это <a href="https://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%BF%D1%80%D0%B5%D1%80%D1%8B%D0%B2%D0%BD%D0%BE%D0%B5_%D1%80%D0%B0%D0%B2%D0%BD%D0%BE%D0%BC%D0%B5%D1%80%D0%BD%D0%BE%D0%B5_%D1%80%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5">равномерное
распределение</a>
<span class="arithmatex">\(U \left(0,1\right)\)</span>. </li>
<li>Монета подбрасывается. </li>
<li>Распределение <span class="arithmatex">\(\theta\)</span> уточняется по формуле<sup id="fnref:2"><a class="footnote-ref" href="#fn:2">2</a></sup>:
$$\Large
\pi(\theta | \xi) = \frac{p(\xi|\theta)p(\theta)}
{\int\limits_{\Theta}p(\xi|\theta)p(\theta)d\theta}
$$</li>
<li>Повторить пункты 2-4, предполагая <span class="arithmatex">\(\pi(\theta) = \pi(\theta|\xi)\)</span></li>
</ol>
<p>Тогда оценкой <span class="arithmatex">\(\theta\)</span> будет:
$$\Large
\hat \theta = \arg \max_\theta \pi ( \theta | \xi )
$$</p>
<p>Иначе говоря,
<a href="https://ru.wikipedia.org/wiki/%D0%9C%D0%BE%D0%B4%D0%B0_%28%D1%81%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D0%BA%D0%B0%29">мода</a>
апостериорного распределения.</p>
<p>Мы, в качестве априорного распределения, взяли <a href="https://ru.wikipedia.org/wiki/%D0%91%D0%B5%D1%82%D0%B0-%D1%80%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5">Бета-распределения</a> <span class="arithmatex">\(Beta(2,2)\)</span>. В
таком случае, если на <span class="arithmatex">\(i\)</span>-ом шаге мы имеем:
$$\Large
\theta \sim Beta \left( \alpha_i, \beta_i \right)
$$</p>
<p>то апостериорное распределение будет:</p>
<div class="arithmatex">\[\Large
Beta \left( \alpha_i, \beta_i \right) =
\begin{cases}
Beta \left( \alpha_i + 1, \beta_i \right), &amp;\xi_i = 1 \\
Beta \left( \alpha_i, \beta_i + 1 \right), &amp;\xi_i = 0 \\
\end{cases}
\]</div>
<p>Тогда не нужно интегрировать на каждом шаге, что существенно упрощает вычисления.</p>
<h2 id="_3">Решение</h2>
<p>Приведем решение на <code>python</code>.</p>
<h3 id="_4">Библиотеки</h3>
<p>Сначала нужно импортировать и настроить библиотеки:</p>
<div class="highlight"><pre><span></span><code><span class="kn">import</span><span class="w"> </span><span class="nn">numpy</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">np</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">pandas</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pd</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">matplotlib.pyplot</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">plt</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">seaborn</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">sns</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">tqdm</span><span class="w"> </span><span class="kn">import</span> <span class="n">tqdm</span>
<span class="n">plt</span><span class="o">.</span><span class="n">rcParams</span><span class="o">.</span><span class="n">update</span><span class="p">({</span><span class="s1">&#39;font.size&#39;</span><span class="p">:</span> <span class="mi">14</span><span class="p">})</span>
</code></pre></div>
<h3 id="_5">Константы и функции</h3>
<p>Обозначим константы:</p>
<ul>
<li><code>p</code> — истинная вероятность выпадения орла.</li>
<li><code>NMODEL</code> — количество бросков монеты.</li>
</ul>
<div class="highlight"><pre><span></span><code><span class="n">p</span> <span class="o">=</span> <span class="mf">0.523</span>
<span class="n">NMODEL</span> <span class="o">=</span> <span class="mi">7501</span>
</code></pre></div>
<p>Введем функции:
- <code>beta</code> — объект для Бета-распределения
- <code>coin</code> — функция одиночного броска монеты</p>
<div class="highlight"><pre><span></span><code><span class="kn">from</span><span class="w"> </span><span class="nn">scipy.stats</span><span class="w"> </span><span class="kn">import</span> <span class="n">beta</span>
<span class="n">coin</span> <span class="o">=</span> <span class="k">lambda</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">binomial</span><span class="p">(</span><span class="n">n</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">p</span><span class="o">=</span><span class="n">p</span><span class="p">)</span>
</code></pre></div>
<h3 id="_6">Моделирование</h3>
<p>В качестве априорного распределения тут используется Бета-распределение
<span class="arithmatex">\(Beta(2,2)\)</span>. Это сделано потому, что расчет моды накладывает ограничение, что оба
параметра должны быть строго больше 1.</p>
<p>Мода расчитывается по формуле:</p>
<div class="arithmatex">\[\Large
\text{Mode} = \frac{\alpha - 1}{\alpha + \beta - 2}
\]</div>
<div class="highlight"><pre><span></span><code><span class="n">alphas</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">NMODEL</span><span class="p">)</span>
<span class="n">betas</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">NMODEL</span><span class="p">)</span>
<span class="n">alphas</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">betas</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="mi">2</span><span class="p">,</span><span class="mi">2</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">tqdm</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">NMODEL</span><span class="p">)):</span>
<span class="n">A</span> <span class="o">=</span> <span class="n">coin</span><span class="p">()</span>
<span class="k">if</span> <span class="n">A</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">betas</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="mi">1</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">alphas</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="mi">1</span>
<span class="n">betas</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">cumsum</span><span class="p">(</span><span class="n">betas</span><span class="p">)</span>
<span class="n">alphas</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">cumsum</span><span class="p">(</span><span class="n">alphas</span><span class="p">)</span>
<span class="n">Es</span> <span class="o">=</span> <span class="p">(</span><span class="n">alphas</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">alphas</span> <span class="o">+</span> <span class="n">betas</span> <span class="o">-</span> <span class="mi">2</span><span class="p">)</span>
</code></pre></div>
<h3 id="_7">График</h3>
<h4 id="_8">Мода</h4>
<p>Построим график зависимости моды от количества бросков.</p>
<div class="highlight"><pre><span></span><code><span class="n">fig</span><span class="p">,</span> <span class="n">ax</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span><span class="mi">8</span><span class="p">),</span> <span class="n">dpi</span><span class="o">=</span><span class="mi">80</span><span class="p">)</span>
<span class="n">sns</span><span class="o">.</span><span class="n">lineplot</span><span class="p">(</span><span class="n">x</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">NMODEL</span><span class="p">),</span>
<span class="n">y</span><span class="o">=</span><span class="n">Es</span><span class="p">,</span>
<span class="n">ax</span><span class="o">=</span><span class="n">ax</span><span class="p">,</span>
<span class="n">label</span><span class="o">=</span><span class="sa">r</span><span class="s2">&quot;arg$\max_p \; f(p|\mathbb</span><span class="si">{X}</span><span class="s2">)$&quot;</span><span class="p">,</span> <span class="p">)</span>
<span class="n">sns</span><span class="o">.</span><span class="n">lineplot</span><span class="p">(</span><span class="n">x</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">NMODEL</span><span class="p">),</span>
<span class="n">y</span><span class="o">=</span><span class="n">p</span><span class="p">,</span>
<span class="n">ax</span><span class="o">=</span><span class="n">ax</span><span class="p">,</span>
<span class="n">label</span><span class="o">=</span><span class="sa">r</span><span class="s2">&quot;Истинное $p = </span><span class="si">{:.3f}</span><span class="s2">$&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">p</span><span class="p">))</span>
<span class="n">ax</span><span class="o">.</span><span class="n">grid</span><span class="p">()</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set</span><span class="p">(</span><span class="n">ylabel</span><span class="o">=</span><span class="sa">r</span><span class="s2">&quot;$E(p|\mathbb</span><span class="si">{X}</span><span class="s2">)$&quot;</span><span class="p">,</span> <span class="n">xlabel</span><span class="o">=</span><span class="sa">r</span><span class="s2">&quot;$i$&quot;</span><span class="p">);</span>
</code></pre></div>
<p><img alt="mode.jpg" src="../assets/baes/mode.jpg" /></p>
<p>Гифка</p>
<p>Сделаем гифку на тему. Сначала нужно импортировать библиотеку <code>imageio</code> и зададим
шаг <code>STEP</code> (так как, потом нужно будет сохранять каждый график в опертивной
памяти, что проблематично при большом <code>NMODEL</code>):</p>
<div class="highlight"><pre><span></span><code><span class="kn">import</span><span class="w"> </span><span class="nn">imageio</span>
<span class="n">STEP</span> <span class="o">=</span> <span class="n">NMODEL</span><span class="o">//</span><span class="mi">150</span>
</code></pre></div>
<p>После, создадим список функций плотности вероятности:</p>
<div class="highlight"><pre><span></span><code><span class="n">pi</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">tqdm</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">NMODEL</span><span class="p">)):</span>
<span class="n">pi</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">beta</span><span class="p">(</span><span class="n">alphas</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">betas</span><span class="p">[</span><span class="n">i</span><span class="p">]))</span>
</code></pre></div>
<p>И по ним сделаем gif-изображение:</p>
<div class="highlight"><pre><span></span><code><span class="k">def</span><span class="w"> </span><span class="nf">create_frame</span><span class="p">(</span><span class="n">i</span><span class="p">):</span>
<span class="n">fig</span><span class="p">,</span> <span class="n">ax</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span><span class="mi">8</span><span class="p">),</span> <span class="n">dpi</span><span class="o">=</span><span class="mi">80</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">500</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">pi</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">pdf</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">i_max</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">y</span><span class="p">)</span>
<span class="n">x_max</span> <span class="o">=</span> <span class="n">x</span><span class="p">[</span><span class="n">i_max</span><span class="p">]</span>
<span class="n">y_max</span> <span class="o">=</span> <span class="n">y</span><span class="p">[</span><span class="n">i_max</span><span class="p">]</span>
<span class="n">ax</span><span class="o">.</span><span class="n">grid</span><span class="p">()</span>
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="sa">r</span><span class="s2">&quot;$f(p|\mathbb</span><span class="si">{X}</span><span class="s2">)$&quot;</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">axvline</span><span class="p">(</span><span class="n">x</span> <span class="o">=</span> <span class="n">p</span><span class="p">,</span> <span class="n">color</span> <span class="o">=</span> <span class="s1">&#39;red&#39;</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;Истинное $p=</span><span class="si">{</span><span class="n">p</span><span class="si">}</span><span class="s2">$&quot;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">([</span><span class="n">x_max</span><span class="p">],</span>
<span class="p">[</span><span class="n">y_max</span><span class="p">],</span>
<span class="n">color</span><span class="o">=</span><span class="s2">&quot;green&quot;</span><span class="p">,</span>
<span class="n">marker</span><span class="o">=</span><span class="s2">&quot;o&quot;</span><span class="p">,</span>
<span class="n">label</span><span class="o">=</span><span class="sa">r</span><span class="s2">&quot;Мода $f(p|\mathbb</span><span class="si">{X}</span><span class="s2">)$&quot;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">fontsize</span> <span class="o">=</span> <span class="mi">14</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span><span class="mi">100</span><span class="p">])</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="sa">r</span><span class="s1">&#39;$f(p|\mathbb</span><span class="si">{X}</span><span class="s1">)$&#39;</span><span class="p">,</span> <span class="n">fontsize</span> <span class="o">=</span> <span class="mi">14</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="sa">r</span><span class="s1">&#39;Распределение p, $i=</span><span class="si">{}</span><span class="s1">$&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">i</span><span class="o">+</span><span class="mi">1</span><span class="p">),</span>
<span class="n">fontsize</span><span class="o">=</span><span class="mi">14</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">savefig</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;./img/img_</span><span class="si">{</span><span class="n">i</span><span class="si">:</span><span class="s1">04d</span><span class="si">}</span><span class="s1">.png&#39;</span><span class="p">,</span>
<span class="n">transparent</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">facecolor</span> <span class="o">=</span> <span class="s1">&#39;white&#39;</span>
<span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">tqdm</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">NMODEL</span><span class="p">,</span> <span class="n">STEP</span><span class="p">)):</span>
<span class="n">create_frame</span><span class="p">(</span><span class="n">i</span><span class="p">)</span>
<span class="n">frames</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">tqdm</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">NMODEL</span><span class="p">,</span> <span class="n">STEP</span><span class="p">)):</span>
<span class="n">image</span> <span class="o">=</span> <span class="n">imageio</span><span class="o">.</span><span class="n">v2</span><span class="o">.</span><span class="n">imread</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;./img/img_</span><span class="si">{</span><span class="n">i</span><span class="si">:</span><span class="s1">04d</span><span class="si">}</span><span class="s1">.png&#39;</span><span class="p">)</span>
<span class="n">frames</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">image</span><span class="p">)</span>
<span class="n">imageio</span><span class="o">.</span><span class="n">mimsave</span><span class="p">(</span><span class="s1">&#39;./distributions.gif&#39;</span><span class="p">,</span>
<span class="n">frames</span><span class="p">,</span>
<span class="n">fps</span> <span class="o">=</span> <span class="mi">30</span><span class="p">)</span>
</code></pre></div>
<p>Результат:</p>
<p><img alt="gif" src="../assets/baes/video.gif" /></p>
<div class="footnote">
<hr />
<ol>
<li id="fn:1">
<p>Понятно, что вероятность выпадения решки равна <span class="arithmatex">\(1 - p\)</span>&#160;<a class="footnote-backref" href="#fnref:1" title="Jump back to footnote 1 in the text">&#8617;</a></p>
</li>
<li id="fn:2">
<p><span class="arithmatex">\(p(\theta|\xi)\)</span> -- это функция правдоподобия.&#160;<a class="footnote-backref" href="#fnref:2" title="Jump back to footnote 2 in the text">&#8617;</a></p>
</li>
</ol>
</div>
<aside class="md-source-file">
<span class="md-source-file__fact">
<span class="md-icon" title="Last update">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M21 13.1c-.1 0-.3.1-.4.2l-1 1 2.1 2.1 1-1c.2-.2.2-.6 0-.8l-1.3-1.3c-.1-.1-.2-.2-.4-.2m-1.9 1.8-6.1 6V23h2.1l6.1-6.1zM12.5 7v5.2l4 2.4-1 1L11 13V7zM11 21.9c-5.1-.5-9-4.8-9-9.9C2 6.5 6.5 2 12 2c5.3 0 9.6 4.1 10 9.3-.3-.1-.6-.2-1-.2s-.7.1-1 .2C19.6 7.2 16.2 4 12 4c-4.4 0-8 3.6-8 8 0 4.1 3.1 7.5 7.1 7.9l-.1.2z"/></svg>
</span>
2025-06-02
</span>
</aside>
</article>
</div>
<script>var target=document.getElementById(location.hash.slice(1));target&&target.name&&(target.checked=target.name.startsWith("__tabbed_"))</script>
</div>
</main>
<footer class="md-footer">
<div class="md-footer-meta md-typeset">
<div class="md-footer-meta__inner md-grid">
<div class="md-copyright">
Made with
<a href="https://squidfunk.github.io/mkdocs-material/" target="_blank" rel="noopener">
Material for MkDocs
</a>
</div>
</div>
</div>
</footer>
</div>
<div class="md-dialog" data-md-component="dialog">
<div class="md-dialog__inner md-typeset"></div>
</div>
<div class="md-progress" data-md-component="progress" role="progressbar"></div>
<script id="__config" type="application/json">{"base": "../..", "features": ["navigation.instant", "navigation.instant.progress", "header.autohide"], "search": "../../assets/javascripts/workers/search.d50fe291.min.js", "tags": null, "translations": {"clipboard.copied": "Copied to clipboard", "clipboard.copy": "Copy to clipboard", "search.result.more.one": "1 more on this page", "search.result.more.other": "# more on this page", "search.result.none": "No matching documents", "search.result.one": "1 matching document", "search.result.other": "# matching documents", "search.result.placeholder": "Type to start searching", "search.result.term.missing": "Missing", "select.version": "Select version"}, "version": null}</script>
<script src="../../assets/javascripts/bundle.13a4f30d.min.js"></script>
<script src="../../javascripts/mathjax.js"></script>
<script src="https://unpkg.com/mathjax@3/es5/tex-mml-chtml.js"></script>
</body>
</html>